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The linear stage of stability is studied for a two-component fractional reaction-diffusion system. It is shown
that, with a certain value of the fractional derivative index, a different type of instability occurs. The linear
stability analysis shows that the system becomes unstable toward perturbations of finite wave number. As a
result, inhomogeneous oscillations with this wave number become unstable and lead to nonlinear oscillations
which result in spatial oscillatory structure formation. A computer simulation of a Bonhoeffer–van der Pol type
of reaction-diffusion system with fractional time derivatives is performed.
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I. INTRODUCTION

Since the well-known Turing reaction-diffusion model
was discovered �1�, enormous efforts have been made in the
investigation of nonlinear self-organization phenomena in
nature. The key models that made the greatest impact, not
only in physics, chemistry, or biology, but also in nonlinear
science, are the phenomenological models like the Brussela-
tor and Oregonator, the model of Gierer and Meinhardt, the
Bonhoeffer–van der Pol model, etc. �to review the models,
see, for example, �2–4��. These models make it possible to
grasp the general properties of real systems, which at the
same time are so complex that they cannot be described just
by simple equations. For instance, recent investigations show
that, in living systems, the morphogen diffusion in cell envi-
ronment is non-Fickian and it certainly does not satisfy the
standard reaction-diffusion system model �5�. Anomalous
diffusion is also inherent to certain plasma systems �6�, het-
erogeneous solid state materials, etc. �7,8�. Therefore, in re-
cent years, there has been a great deal of interest in fractional
reaction-diffusion systems �RDSs� �9–17�.

In this Rapid Communication, we will show that in frac-
tional reaction-diffusion systems we have a type of instabil-
ity that is not possible to find in reaction-diffusion systems
with integer derivatives. We confirm the linear stability
analysis by numerical calculation of a Bonhoeffer–van der
Pol type of fractional RDS.

Let us consider the RDS for activator n1 and inhibitor n2

�1
��n1�x,t�

�t� = l2 �2

�x2n1�x,t� + W�n1,n2,A� , �1�

�2
��n2�x,t�

�t� = L2 �2

�x2n2�x,t� + Q�n1,n2,A� �2�

subject to the Neumann boundary conditions

dni/dx�x=0 = dni/dx�x=lx
= 0, i = 1,2, �3�

and with certain initial condition �ni�t=0=ni
0�x�. Here x, 0

�x� lx, �1, �2, l, and L are the characteristic times and
lengths of the system, and A is an external parameter.

The fractional derivatives ��ni�x , t� /�t� on the left-hand
side of Eqs. �1� and �2�, instead of the standard time deriva-
tives, are the Caputo fractional derivatives in time of order
0���2 and are represented by �18,19�

��ni�t�
�t� ª

1

��m − ���0

t ni
�m����

�t − ���+1−md� ,

where m−1���m, m�1,2 �see, �18,19��.

II. LINEAR STABILITY ANALYSIS

The stability of the steady-state constant solutions of the
system �1� and �2� corresponding to the homogeneous equi-
librium state

W�n1,n2,A� = 0, Q�n1,n2,A� = 0 �4�

can be analyzed by linearization of the system near this so-
lution. In this case, the system �1� and �2� can be transformed
to a linear fractional RDS at this equilibrium point and even-
tually can be converted to the simplest diagonal representa-
tion

d��ni�t�
dt� = �i�ni�t� , �5�

where �1,2= 1
2 �trF±�tr2F−4 det F� are eigenvalues of the

matrix

F = ��a11 − k2l2�/�1 a12/�1

a21/�2 �a22 − k2L2�/�2
	 ,

k= �� / lx�j, j=1,2 , . . . , a11=Wn1
� , a12=Wn2

� , a21=Qn1
� , and

a22=Qn2
� �all derivatives are taken at homogeneous equilib-

rium states W=Q=0�, and �ni are new variables obtained as
a result of the change of basis corresponding to diagonaliza-
tion of the matrix F.

In this case, the solution of the vector equation �5� is
given by the Mittag-Leffler functions �18,19�
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�ni�t� = 

k=0

	
��it

��k�ni�0�
��k� + 1�

= E���it
���ni�0�, i = 1,2.

�6�

Analyzing �6�, we can conclude that, if for any of the roots

�arg��i�� � ��/2 �7�

the solution has an increasing function component, then the
system is asymptotically unstable �20�.

For integer �=1 the roots �1,2 are complex inside the
parabola det F=tr2F /4, and the fixed points are spiral
sources �trF
0� or spiral sinks �trF�0�. In this case, the
domain on the right-hand side of the parabola �trF
0� is
unstable with the existing limit cycle, while the domain on
the left-hand side �trF�0� is stable. By crossing the axis
trF=0, the Hopf bifurcation conditions become true.

For �, 0���2, for every point inside the parabola
det F=tr2F /4, we can introduce a marginal value �0, �0
= �2/���arg��i��, which follows from the equality conditions
�7� and is given by the formula �15�

�0 = �
2

�
arctan �4 det F/tr2F − 1, trF � 0,

2 −
2

�
arctan �4 det F/tr2F − 1, trF � 0.� �8�

The value of � is a certain bifurcation parameter which
switches the stable and unstable states of the system. At
lower �, ���0= �2/���arg��i��, the system has oscillatory
modes, but they are stable. Increasing the value of �
�0
= �2/���arg��i�� leads to instability. In fact, having a complex
number �i with Re �i�0, Im �i�0, it is always possible to
satisfy the condition �arg��i����� /2, and the system be-
comes unstable according to a certain type of oscillation. The
smaller the value of trF, the easier it is to satisfy the insta-
bility conditions. In the case of k=0 this type of analysis was
made in �15,16�. In this paper we would like to direct your
attention to the fact that we can have another type of insta-
bility when k�0, which leads to nonlinear inhomogeneous
oscillations of system parameters.

III. DIFFERENT LIMITS OF INSTABILITY

Let us consider stability conditions for different possible
limits. It is widely known for integer time derivatives that the
system �1� and �2� becomes unstable according to either a
Turing or a Hopf bifurcation.

Conditions for the Turing instability are

trF � 0, det F�k = 0� 
 0, det F�k0� � 0. �9�

In this case, the eigenvalues are real, and at a11
0, a22�0,
a12a21�0, l�L the conditions of the Turing instability for
k0�0 lead to spatial pattern formation.

Conditions for the Hopf bifurcation are

trF 
 0, det F�k = 0� 
 0, �10�

which occur at k=0, a11
0, a22�0, a12a21�0, �1��2 and
lead to homogeneous oscillations.

In the case of a fractional derivative index, the Hopf bi-
furcation is not connected with the condition a11
0 and can
hold at a certain value of � when the fractional derivative
index is sufficiently large �16�.

Let us consider a new possible situation when

trF � 0, 4 det F�0� � tr2F�0�, 4 det F�k0� 
 tr2F�k0� .

�11�

Analysis of the expressions �11� shows that at k=0 we have
two real and less than zero eigenvalues, and the system is
certainly stable. If the last inequality occurs for certain val-
ues of k0�0, we can get two complex eigenvalues. As a
result, in the case of fractional derivatives, a different type of
instability, connected with the interplay between the determi-
nant and trace of the linear system, emerges. With this type
of eigenvalue, it is possible to find the value of the fractional
derivative index when the system becomes unstable.

In fact, the last two conditions can be rewritten as

�a11�1 − a22�2�2 
 − 4a12a21�1�2, �12�

− 4a12a21�1�2 
 ��a11 − k2l2��2 − �a22 − k2L2��1�2. �13�

The simplest way to satisfy the last condition, is to estimate
the optimal value of k=k0,

k0
2 = a11�2 − a22�1

�1L2 − �2l2  . �14�

Having obtained �14�, we can estimate the marginal value of
�0

�0 = 2 −
2

�
arctan T , �15�

where the expression T is

T =
�− 4a12a21�1�2�1/2

�a11�2 − a22�1�
l2�2 + L2�1

l2�2 − L2�1
 − a11�2 − a22�1

.

The last expression determines the value of �0 as a function
of all parameters of the system. The greater the expression,
the smaller is the value �0. Trying to reach the maximum
possible value of �15�, we can see that it goes to zero if either
�1 or �2 goes to zero and, as a result, �0→2. In the interme-
diate situation, when �1��2 the expression reaches its maxi-
mum. Analyzing the last expression, we can see that at L
� l the denominator is very large and the right-hand side
tends to zero. For different lengths L� l or L l, �1��2,
a11�0, a22�0, a12a21�0, we can estimate the value of �0
as �0=2− �2/��arctan 1/2�1.7.

IV. COMPUTER SIMULATION OF THE STABILITY
CURVES AND INHOMOGENEOUS OSCILLATORY

STRUCTURES

We consider here a Bonhoeffer–van der Pol type of RDS
with cubic nonlinearity �see, for example, �3,4,21,22��. In
this case, the source term for the activator variable is nonlin-
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ear W=n1−n1
3−n2, and it is linear for the inhibitor one Q

=−n2+�n1+A. The null isoclines of the system are repre-
sented on Fig. 1�a�. The homogeneous solution of variables
n̄1 and n̄2 can be determined from the system of equations
W=Q=0, and, for example, for determination of n̄1 we have
the cubic algebraic equation

�� − 1�n̄1 + n̄1
3/3 + A = 0. �16�

Simple calculation of the derivatives in the homogeneous
state �16� a11= �1− n̄1

2�, a12=−1, a21=�, a22=−1 makes it
possible to investigate the eigenvalues of the system. Real
and imaginary parts for this case are represented on Fig. 1�b�.
We see that the real part of the roots is always less than zero
and the imaginary part in some interval of wave number k
becomes nonzero. In this case when the fractional derivative
index becomes greater than some critical value �0, the insta-
bility condition holds true. So, as these instability conditions
are possible to realize for some interval kmin�k�kmax, this
means that only the perturbations with this wave number are
unstable, and they are unstable for oscillatory fluctuations.
This situation is qualitatively different from the integer RDS
whether either a Turing �k�0� or a Hopf bifurcation �k=0�
takes place, and this depends on which conditions are easier
to realize. In the system under consideration, we can choose
the parameter when we have no Turing on Hopf bifurcation
�for k=0� at all. Nevertheless, we obtain the result that con-
ditions for Hopf bifurcation can be realized for nonhomoge-
neous wave numbers.

Taking into account the calculations made above we can
estimate the value of T:

T =
2���

��1 − n̄1
2�� + 1�

l2� + L2

L2 − l2�
 + �n̄1

2 − 1�� + 1

,

where �2 /�1=�, which determines the marginal value of �0
�15�.

In Figs. 1�c� and 1�d�, two-dimensional plots display the
parameter ranges for the stability and existence of dynamical
structures. In the largest “boomerang” domain the system is
unstable according to wave numbers k=0 �15,16�. For the
case k�0, we find instability conditions for different wave
numbers k=1,2 ,3 , . . . �by solution of the equality �arg��i��
=�� /2 at certain � �7��. We can see that these regions over-
lap and, at the same parameters, the instability conditions for
different regimes are satisfied simultaneously �Figs. 1�c� and
1�d��. As is seen from the figures, there are conditions where
only instability according to nonhomogeneous wave num-
bers holds. As a result, perturbations with k=0 relax to the
homogenous state; only the perturbations with a certain
value of k become unstable and the system exhibits inhomo-
geneous oscillations.

The results of the numerical study of the initial value
problem of the system �1� and �2� are represented on Figs.
2�a� and 2�b�. The system with the corresponding initial and
boundary conditions was integrated numerically using ex-
plicit and implicit schemes with respect to time and the cen-
tered difference approximation for spatial derivatives. The
fractional derivatives were approximated using a scheme on
the basis of the Grunwald-Letnikov definition �19�.

In contrast to a standard RDS, here, the inhomogeneous
distributions are unstable at certain wave numbers and lead
to space-time oscillations. With increase in the parameter �,
the amplitude of the oscillatory structures increases. The
emergence of inhomogeneous oscillations, which destroy the
stationary state, leads to a different form of pattern forma-

(a)

(b)

(c)

(d)

FIG. 1. �a� Null isoclines. �b� Imaginary and real eigenvalues.
�c� Two-dimensional bifurcation diagram domain in coordinates
�n1 ,�1 /�2� for �=1.9, �=2, L=1, and k=1, for different values of l
�l=6, black; l=4, dark gray; l=0.1, light gray�. �d� Zoomed part of
the region �c� at l=0.1 for different values of k �k=3, black; k=2,
dark gray; k=1, light gray�.

(a)

(b)

FIG. 2. Oscillatory structures of fractional RDS �1� and �2�.
Dynamics of variable n1 �a� and n2 �b� on the time interval �0,32�
for �=1.94, lx=6.28, A=−50.0, �=2, �1=12.0, �2=1, l2=0.1, L2

=1. Initial conditions are n1
0= n̄1−0.05 cos�k0x�, n2

0= n̄2

−0.05 cos�k0x�.
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tion. The resulting structures are similar to standing waves,
rather than to standard structures already investigated in au-
towave media.

V. CONCLUSION

In this Rapid Communication we consider a mechanism
of instability in RDSs with fractional derivatives. It was
shown that, at a sufficient value of the fractional derivative
index �, the system becomes unstable to inhomogeneous
perturbations �k�0� with eigenvalues with imaginary parts.
As a result of this instability, pattern formation can be rep-

resented as oscillatory structures similar to inhomogeneous
standing waves in linear systems.

It should be noted that at the present time we do not have
a reliable experimental system for investigation of these phe-
nomena. Nevertheless, systems with anomalous diffusion
properties that are described by reaction-diffusion equations
can be created synthetically, with the help of modern tech-
nology �23–25�. In this case, the corresponding layers have
to be endowed with the properties inherent to fractional order
controllers �26�. As a result, each layer can be described by
fractional differential equations and can even have its own
fractional index.
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